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The transition from laminar to turbulent of the natural-convection flow inside a 
square, differentially heated cavity with adiabatic horizontal walls is calculated, using 
the finite-volume method. The purpose of this study is firstly to determine the 
dependence of the laminar-turbulent transition on the Prandtl number and secondly 
to investigate the physical mechanisms responsible for the bifurcations observed. 
It is found that in the square cavity, for Prandtl numbers between 0.25 and 2.0, 
the transition occurs through periodic and quasi-periodic flow regimes. One of the 
bifurcations is related to an instability occurring in a jet-like fluid layer exiting from 
those corners of the cavity where the vertical boundary layers are turned horizontal. 
This instability is mainly shear-driven and the visualization of the perturbations shows 
the occurrence of vorticity concentrations which are very similar to Kelvin-Helmholtz 
vortices in a plane jet, suggesting that the instability is a Kelvin-Helmholtz-type 
instability. The other bifurcation for Prandtl numbers between 0.25 and 2.0 occurs 
in the boundary layers along the vertical walls. It differs however from the related 
instability in the natural-convection boundary layer along an isolated vertical plate : 
the instability in the cavity is shear-driven whereas the instability along the vertical 
plate is mainly buoyancy-driven. For Prandtl numbers between 2.5 and 7.0, it is 
found that there occurs an immediate transition from the steady to the chaotic flow 
regime without intermediate regimes. This transition is also caused by instabilities 
originating and concentrated in the vertical boundary layers. 

1. Introduction 
The study of natural-convection flows in rectangular cavities, both numerically and 

experimentally, has received considerable attention in the past few decades. Originally, 
the motivation for this research came from the many technical and engineering 
applications. Later, this type of flow, which is recirculating and is characterized by 
the presence of thin boundary layers along the cavity walls, also became a popular 
problem to test and compare numerical algorithms that are developed to solve the 
Navier-Stokes equations. This popularity was expressed by the large number of 
contributors in a comparison exercise organized by De Vahl Davis & Jones (1983) 
in which the steady, laminar flow of air in a square, differentially heated cavity with 
adiabatic horizontal walls was calculated for Rayleigh numbers up to lo6. 
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Since then, calculations have been performed for higher Rayleigh numbers and 
attention has been focused towards describing the temporal behaviour of the flow. 
This problem was addressed as early as 1980 by Patterson & Imberger who performed 
a scaling analysis which predicted that, under certain conditions, the approach to 
steady state (occurring after a sudden increase in the temperature difference between 
the vertical walls) was oscillatory. The oscillations corresponded to damped internal 
gravity waves caused by the entrainment of fluid from the intrusions along the 
horizontal walls by the vertical boundary layers. The decaying oscillatory behaviour 
was subsequently confirmed by numerical calculations of Patterson & Imberger (1980). 

Apart from the approach to steady state, attention has been focused on calculating 
the transition from laminar to turbulent. Le Qukrk & Alziary de Roquefort (1986) 
calculated the transition to time-periodic flow for air ( P r  = 0.71) in cavities with 
aspect ratios (= height/width ratios) ranging from 2 to 10. They concluded that 
the first bifurcation was, for aspect ratios larger than 3, related to the vertical 
boundary layers becoming unstable. Paolucci & Chenoweth (1989) calculated both 
bifurcations to periodic and quasi-periodic flow for air in cavities with aspect ratios 
ranging from 0.5 to 5 .  For cavities with aspect ratios between 0.5 and 3, they 
concluded that the first bifurcation is related to an instability occurring in the flow 
divergence in the horizontal fluid layer near the exit corners, where the vertical 
boundary layers are turned horizontal by the presence of the horizontal walls. The 
resulting oscillation was present everywhere in the cavity because of the generation of 
internal gravity waves. Paolucci & Chenoweth (1989), following a suggestion of Ivey 
(1984), characterized the flow divergence and the instability as being similar to the 
hydraulic-jump phenomenon occurring in open channel flows (see e.g. Turner 1973). 
They characterized this hydraulic jump by defining an internal Froude number. 
Although the agreement between their calculated Froude numbers and the actual 
critical Rayleigh numbers calculated for the cavities was good, doubts about the 
characterization of the instability in terms of the hydraulic-jump mechanism remained. 
Ravi, Henkes & Hoogendoorn (1994) performed a detailed study of the flow structure 
in the corner regions where the boundary layers are turned horizontal and concluded 
that it showed no characteristics of an internal hydraulic jump, but that the flow 
separation was instead caused by a thermal mechanism. The second instability, as 
calculated by Paolucci & Chenoweth (1989) was caused by an instability occurring 
in the vertical boundary layers. The frequencies obtained by them were largely in 
agreement with the results obtained by Henkes (1990) and showed close agreement 
with the results of Gill & Davey (1969) for the instability occurring in the natural- 
convection boundary layer along an isolated vertical plate. 

All these studies were concerned with air as the working fluid. In addition water 
( P r  = 7.0) has received some attention. Schladow, Patterson & Street (1989), Schladow 
(1990) and Patterson & Armfield (1992) considered the transient instabilities that 
occur in a square cavity filled with water immediately after a temperature difference 
is imposed. These studies, however, are not concerned with calculating the transition 
to an unsteady flow regime. Henkes (1990) performed some calculations for water to 
find the transition to unsteady flow. He obtained high frequencies in the unsteady 
solution, probably related to the boundary-layer instability, but could not obtain 
results that were (fully) grid-independent. Also, the critical Rayleigh number in the 
square cavity was several orders of magnitude larger than could be expected on the 
basis of the results of Gill & Davey (1969) for the isolated plate, casting doubts on 
the previously assumed analogy. 

These previous studies were mostly numerical studies in which the full, time- 
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dependent Navier-Stokes equations were integrated and the solution for large time 
was calculated. Another approach which may be used to determine the transition 
to unsteady flow numerically has been employed by Winters (1987, 1988, 1989). In 
this approach, a relatively modern computational technique is used for locating the 
oscillatory instability by assuming that the bifurcation is a Hopf bifurcation and by 
employing an extended system of steady equations whose solution yields the critical 
parameter values at the bifurcation point. Compared to direct simulations of the 
full time-dependent Navier-Stokes equations, this approach has the advantages of a 
much higher accuracy in determining the bifurcation point and of being able to trace 
unstable as well as stable solutions. The main disadvantage is the inability to study 
flows with a complex time-dependence. 

The present study addresses the questions concerning the instability mechanisms for 
the two instabilities in the square cavity with adiabatic horizontal walls as mentioned 
above. This is accomplished by solving the time-dependent Navier-Stokes equations 
and by investigating the relationship between the Prandtl number and the different 
instabilities with their resulting oscillations in the solution for large time of the cavity 
flow. Detailed calculations were performed for the square cavity for Prandtl numbers 
ranging from 0.25 to 7.0. Since it was found that the boundary-layer-type instability 
was not much influenced by the aspect ratio, some calculations were also performed 
for an aspect ratio 4. The frequencies are determined from power spectra using 
typically some 10000 time steps to calculate a single power spectrum. Whereas the 
periodic and quasi-periodic flow regimes are characterized by a single sharp spike 
and two sharp spikes in the power spectrum respectively (plus spikes corresponding 
to linear combinations of the fundamental frequencies), for higher Rayleigh numbers 
the spectra broaden and the (relative) magnitude of the spikes diminishes, suggesting 
that a chaotic regime has been reached. The results in the square cavity indicate 
that the transition from laminar to chaotic flow for P r  < 2.0 is through periodic and 
quasi-periodic flow regimes. The calculations show strong evidence that the instability 
occurring in the fluid layer exiting from the corners where the vertical boundary 
layers are turned horizontal is basically a Kelvin-Helmholtz-type instability and that 
it is related to the instability occurring in a plane jet which has inflexion points in 
its velocity distribution. It is not related to a hydraulic jump. The results also show 
that the instability originating in the vertical boundary layers of the cavity is indeed 
related to the instability in the natural-convection boundary layer along the vertical 
plate. However, the instability in the cavity turns out to be strongly shear-driven (i.e. 
mechanically driven) which is different from the instability along the isolated vertical 
plate which is mainly buoyancy-driven. This can also explain the large discrepancy 
in critical Rayleigh numbers which is observed between the cavity and the plate 
configurations. 

2. Mathematical description 
2.1. Flow equations 

Consider a two-dimensional rectangular cavity with height H and width L and with 
isothermal vertical sidewalls. The left wall is held at a fixed temperature Th and the 
right wall at a temperature T, (Th > TJ. The horizontal top and bottom walls are 
considered to be perfectly adiabatic. The gravitation g acts in the negative xz-direction 
(see figure 1). 

The flow in the square cavity is fully described by the two-dimensional Navier- 



322 R.  J .  A .  Janssen and R. A .  W M. Henkes 

+x 

FIGURE 1. The geometry under consideration. 

Stokes equations. Under the Boussinesq approximation, these equations read : 

aT aT - a2T x + uJa,l - a q '  

Here, the summation convention has been used: in every term, a summation has 
been performed from 1 to 2 over repeated indices. In equations (2.1), ui denotes the 
velocity component in the xi-direction, p is the density, p is the pressure, v is the 
kinematic viscosity, b is the coefficient of thermal expansion, T is the temperature, 
To is a reference temperature and a the thermal diffusivity. For ease of notation, in 
the following, u1 and u2 will be denoted as u and u respectively and x1 and x2 will be 
denoted as x and y respectively. 

These equations can be made dimensionless using the length scale H, the time 
scale H/(gBATH)'I2, the temperature scale To = T, and the temperature difference 
AT = Th - T,. For the velocity scale we take the buoyant scale (g/3ATH)'12. This 
leads to a set of non-dimensionalized equations, governed by only three characteristic 
numbers: the Rayleigh number Ra = gBATH3/(va), the Prandtl number P r  = v / a  
and the aspect ratio A = H/L. 

To fully specify the mathematical problem both boundary and initial conditions 
have to be specified. The boundary conditions used in the present study are 

1 u = u = o ,  x=O,L, y = O , H ,  

T = Th, x = 0, 

T = T,, x = L, 

a T / a y  = 0, y = O , H .  I 
AS initial condition we take fields calculated earlier for a different Rayleigh number 
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and/or a different Prandtl number. If a different number of grid cells is used, the 
fields are interpolated to the new grid using linear interpolation. 

2.2. Energy balance 
In principle, the Navier-Stokes equations, as presented in the previous subsection, 
completely describe the mathematical problem (in conjunction with properly specified 
boundary and initial conditions). It is, however, instructive to consider the kinetic 
energy for which the conservation equation can be derived from the Navier-Stokes 
equations. To derive the equation describing the conservation of fluctuating kinetic 
energy, we first perform the Reynolds decomposition into a mean and a fluctuating 
quantity. For a scalar variable q5(xi,t), this means 

$ ( X i ,  t )  = g x i )  + q5’(xi, t )  with $(xi) = lim - Jl’i2 $(x i ,  t)dt .  (2.3) 
t’+m t’ 4 . 1 2  

The equation describing the conservation of fluctuating kinetic energy, <ui/2, can 
be derived from the momentum equation in the Navier-Stokes equations. First, the 
momentum equation is multiplied by ui after which the decomposition is introduced 
in the resulting equation. From this equation, the original momentum equation 
multiplied by iii is subtracted. This results in an equation describing the conservation 
of fluctuating kinetic energy, which reads 

Here, the first group of terms on the right-hand side (denoted by I) is a divergence. 
Integrating equation (2.4) over the entire cavity, employing Gauss’ divergence theorem 
and the fact that all fluctuating velocity components at all cavity walls are zero, shows 
that the terms in group I do not contribute to the total fluctuating kinetic energy. 
This group can be interpreted as representing transport of fluctuating kinetic energy. 
The second group, denoted by 11, contains terms that are all linear in the fluctuating 
velocity components. Reynolds-averaging of equation (2.4) would make the terms in 
this group zero (for a periodic oscillation in the flow, taking an average over one 
period of the oscillation suffices to make the terms in group I1 equal to zero). Group 
111 contains terms which neither by integration in space nor by integration in time can 
be made equal to zero. These terms describe production and dissipation of fluctuating 
kinetic energy. The term -uiu)aiii/axj describes the production of fluctuating kinetic 
energy by the shear of the mean flow, gfiui describes the production of fluctuating 
kinetic energy by buoyancy forces and -v(aui /axj)2 describes the viscous dissipation 
of fluctuating kinetic energy. 
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3. Numerical treatment 
The equations (2.1) are discretized by the finite-volume method, employing a 

staggered grid. The integration in time is performed fully implicitly: all spatial 
derivatives are evaluated at the new time level. The unsteady term, the fluxes through 
the sides of the finite volumes and the source are further discretized with finite 
differences. The unsteady term is discretized with three time levels, giving a second- 
order truncation error in time. The diffusion part of the flux is discretized with a 
second-order truncation error, whereas the convection is discretized with a fourth- 
order-accurate approximation for the convective derivative. More details about the 
discretization can be found in Janssen & Henkes (1993). 

The grid is constructed by firstly distributing the velocity grid lines according to 
a stretching function. This distribution is such that the boundaries of the physical 
domain coincide with velocity grid lines. Secondly, the scalar points are placed 
precisely in the centre of the scalar volumes. For the u-velocities, the stretching 
function is chosen as 
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(3.1) 
1 

sin(2n-) i = 0,1,. . . , i M x .  
Xi - i 1 

L i,, 2n ~ M X  

The same function is used for the u-velocities. This distribution concentrates grid 
points in the boundary layers along the walls. 

As an implicit method is used to discretize the time-dependent equations, at each 
new time level a system of nonlinear equations has to be solved. The solving of 
the different equations is decoupled, the equations are linearized by evaluating all 
nonlinearities at the previous iteration level and the discrete systems belonging to 
each of the equations are iteratively solved using a line Gauss-Seidel method. Sweeps 
are made through the computational domain from i = 0 to i = i,,, and vice versa. 
After each sweep the pressure is calculated from a pressure-correction equation. At 
the walls, a zero gradient for the pressure correction is prescribed. To solve the 
discretized Poisson equation for the pressure correction, the preconditioned conjugate 
gradient (( M)ICCG) method was used, in which a (Modified) Incomplete Cholesky 
decomposition of the band matrix, that results from the discretization of the Poisson 
equation, was used as a preconditioning for the Conjugate Gradient (CG) algorithm. 
More details about the (M)ICCG-algorithm can be found in Meijerink & Van der 
Vorst (1977) and Van der Vorst (1989). 

- - 

4. Known structures 
4.1. Basic flow structures 

If the Rayleigh number is increased to infinity, certain terms in the Navier-Stokes 
equations may be neglected and the flow is then described by an asymptotic descrip- 
tion. Considerable effort has been spent in the past both theoretically (Elder 1965; 
Gill 1966; Graebel 1981) and numerically (Blythe, Daniels & Simpkins 1983; Henkes 
& Hoogendoorn 1993) to determine these asymptotic structures. In spite of this, 
however, only an incomplete picture of the asymptotic structures in the cavity flow 
is presently available. The calculations performed by Henkes & Hoogendoorn (1993) 
are the most relevant for the present study since approximately the same range of 
Prandtl numbers is considered. They numerically solved the Navier-Stokes equations 
for increasing Rayleigh number, and they derived the high-Rayleigh-number scalings 
from the results. These calculations show that the flow follows different Rayleigh- 
number scalings in the vertical boundary layers along the isothermal cavity walls, the 
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FIGURE 2. Flow field for the steady flow of air ( P r  = 0.71) at Ra = lo8; (a )  streamlines, 
(b )  isotherms. Contour lines correspond to 10 equidistant values. 

horizontal boundary layers along the adiabatic cavity walls, the corner regions where 
the vertical boundary layers are turned horizontal and the core region. Thus, these 
calculations indicate that there are at least four different composite asymptotic struc- 
tures in the cavity flow. More analysis is required to detect whether a structure can be 
further split up in asymptotic layers. In particular the asymptotics in the corner seem 
to be complicated, and are expected to be described by multiple asymptotic layers. 

For the large values of the Rayleigh number considered in this paper (of the order 
of lo8 - lolo) these four structures are already clearly distinguishable in the flow as is 
shown in figure 2, in which both the streamlines and the isotherms in the square cavity 
for air ( P r  = 0.71) at a Rayleigh number of lo* are depicted. Two of the regions are 
of special importance in this investigation: the core region and the vertical boundary 
layers. The core can be considered to be an inviscid, stably stratified medium with 
an approximately constant stratification (which is clearly visible in figure 2b). As can 
be seen in figure 2(a), the streamlines in the core are (almost) horizontal and the 
flow is (almost) parallel. The vertical boundary layers, on the other hand, resemble 
the natural-convection boundary layers along isothermal vertical plates in a stratified 
environment. 

What is also clearly visible in figure 2(a), is the occurrence of a recirculation region 
and a flow divergence in the upper left and lower right corners of the cavity. Ravi et 
al. (1994) have studied the origin of the recirculation region and the flow divergence 
and found that they were caused by a thermal mechanism which is related to the 
temperature stratification in the core region of the cavity. It has been found in their 
calculations that these structures are very much dependent on the Prandtl number: 
the recirculation region in the steady flow vanishes for Prandtl numbers larger than 
1.4 and the flow divergence for Prandtl numbers larger than 2.0. 

4.2. Internal gravity waves 
A medium that is continuously and stably stratified, as for instance the core region in 
the square cavity, allows internal gravity waves to occur. For standing internal gravity 
waves in an inviscid, continuously stratified medium, Thorpe (1968) calculated wave 
profiles and eigenfrequencies of the oscillations. He expanded the solution of the 
flow equations in a series expansion, the convergence of which depended on the wave 
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amplitude being small. To first order, assuming the temperature stratification S (= 
(H/AT) dT/dy) and thus the density stratification to be constant, the eigenfrequencies 
are given by 

Here, a, and ay denote wavenumbers in the x- and y-directions respectively. Equation 
(4.1) can also be derived directly from the Taylor-Goldstein equation, describing the 
linear stability of an inviscid, stratified parallel flow, assuming the base flow velocity 
to be constant (see Dra in  & Reid 1981). If standing waves are considered, LaJn and 
Ha,/.n take integer values only. However, as emphasized by Turner (1973), equation 
(4.1) also gives the frequency of travelling internal gravity waves (at least those of 
small amplitude). These travelling waves occur particularly if there is a localized 
source of energy, the waves then travelling away from the edges of the source. 

Two important properties of these travelling gravity waves are reflected in equation 
(4.1). Firstly, since a, and ay are wavenumbers, they describe the direction in which 
a wave travels. Waves of a given frequency f travel under a fixed angle 8 to the 
horizontal, irrespective of their wavelength. Here, 8 is given by 

2.n f H  
S1I2 (gBATH)'12 ' 

cose = - 

Secondly, since a$/(a; + a;) < 1, no oscillations with a frequency fH/(gSATH)1/2 
larger than S1I2/2n are possible in the core region. This frequency S1l2/2n is known 
as the Brunt-Vaisala frequency. 

4.3. Boundary-layer instability 
The boundary layers along the isothermal, vertical walls of the cavity resemble those 
along an isolated, heated vertical plate. The stability of these boundary layers has 
long been a subject of investigation and several experimental and numerical studies 
on the boundary layers along an isolated vertical plate have been performed, mainly 
for air and water. As is well-known from these studies, travelling waves can occur in 
these boundary layers. For forced-convection boundary layers, such travelling waves 
are called Tollmien-Schlichting waves. 

The numerical investigations of instabilities in the boundary layer have been 
performed using linear stability analyses. Nachtsheim (1963) performed such a study 
for the boundary layer along a semi-infinite, vertical, hot plate placed in an isothermal 
environment. However, in the rectangular cavity there is the presence of the adiabatic 
horizontal walls and, apart from effects in the corners where the flow is turned 
horizontal, the main consequence of this presence of the horizontal walls is the 
appearance of the stable stratification in the core region of the cavity. Hence, the 
boundary layer is placed in a stratified environment and not in an isothermal one. 
Gill & Davey (1969) performed a linear stability analysis of the natural-convection 
boundary layer along the vertical plate, placed in a stably stratified environment. 
In their study, a detailed analysis of the Prandtl-number dependence of the linear 
boundary-layer instability was also performed. However, in their configuration the 
plate temperature also increased linearly with height, whereas the cavity wall is 
isothermal. Also, Gill & Davey (1969) assumed the steady base flow to be parallel 
and it therefore does not describe the development of the boundary layer in the lower 
part of the cavity. 
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These linear stability analyses predict the critical Rayleigh number at which the 
flow first becomes unstable. They do not predict a single frequency but a range 
of frequencies to appear in the solution. As noted by Gebhart et al. (1988), both 
for an isothermal flat plate and for a plate with a constant heat flux placed in an 
isothermal environment, the boundary layer along the plate has a strong filtering 
effect, in which only a narrow band of frequencies is strongly amplified. Basically, this 
results in essentially a single frequency becoming dominant. This frequency, scaled 
with (gpAT)2/3v-’/3 is independent of the position along the plate and Gebhart & 
Mahajan (1975) denote this frequency as the ‘characteristic frequency’ of the boundary 
layer. 

We will compare frequencies and critical Rayleigh numbers obtained for the rectan- 
gular cavity heated from the side with results obtained by Gill & Davey (1969) for the 
boundary layer along the flat plate for different Prandtl numbers. Gill & Davey (1969) 
present their results in terms of a critical Reynolds number &D and a dimensionless 
wavenumber uGD and wave speed cGD. The transformations to the ‘characteristic’ 
dimensionless frequency of the boundary layer and to the critical Rayleigh number 
used in the present study are 

Racr = 4(&D prl4s3. (4.4) 

Here, the critical Rayleigh number and the frequency f ~ l / ~ / ( g p A T ) ~ / ~  are based on 
2( Th - T,) where T, denotes the temperature infinitely far away from the plate. This 
has been done to make a meaningful comparison with the cavity geometry possible. 
Replacing T, by (Th + Tc)/2 gives AT = Th - T,, the definition introduced earlier. 

5. Results 
In this section, the results obtained in this study will be presented together with 

a discussion of these results both in terms of the transition of the laminar flow to 
a chaotic flow and in terms of instability mechanisms responsible for the observed 
bifurcations in the flow. In all cases considered, we study the transition from laminar 
to chaotic flow for a fixed Prandtl number by changing the Rayleigh number. 

5.1. Transition 
The results in the square cavity can, as far as the transition is concerned, be classified 
into two major groups: those for Prandtl numbers less than or equal to 2 and those 
for Prandtl numbers greater than or equal to 2.5. 

For Prandtl numbers between 0.25 and 2.0, calculations were performed mainly 
using a grid with 160x160 grid cells. By time-step refinement, it was checked that 
a time step At(gpATH)’12/H = 1/32 gave almost time-step-independent results. To 
study the grid-dependence of the obtained results, calculated frequencies for the 
oscillation in the flow for P r  = 0.25 at Ra = 4.25 x lo7 have been tabulated in table 1. 
Clearly, the frequency is almost grid-independent on the 160 x 160 grid. 

To look for oscillations occurring somewhere in the cavity, several characteristic 
quantities, which are located in different regions of the cavity, are monitored. Apart 
from a monitor point located in the upper part of the boundary layer along the hot 
wall, the monitored quantities are urnax, the maximum of the vertical velocity along 
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fH Grid 
(gflATH)'12 

40 x 40 0.113 
80 x 80 0.121 

160 x 160 0.123 

TABLE 1. Results for the frequency of the instability in the flow 
at Ra = 4.25 x lo7 and P r  = 0.25 on different grids. 

the horizontal line at the cavity midheight; u,,,, the maximum of the horizontal 
velocity along the vertical line at half the cavity width; and S, the stratification in the 
centre of the cavity. It should be stressed that the calculated power spectra depend 
on the location inside the cavity, where the monitored quantity is being observed. Not 
just the relative magnitude of the spikes can vary from place to place but it is also 
possible that a certain frequency is not present at all in the power spectrum of one 
of the monitored quantities. This necessitates the use of monitor quantities which are 
spread over the different regions inside the cavity. 

The transition from laminar to chaotic flow, for Prandtl numbers between 0.25 
and 2.0, takes place in agreement with the scenario presented by Ruelle & Takens 
(1971). The flow first bifurcates at a certain critical Rayleigh number Racrl from 
steady to time-periodic. The time-periodic flow is characterized by the fact that 
the power spectra of monitored quantities show a spike at a single frequency and 
(owing to nonlinear self-interaction, see Drazin & Reid 1981) its higher harmonics. 
Then, at a higher Rayleigh number, Ru,,~, a subsequent bifurcation takes place from 
periodic to quasi-periodic flow (characterized by a power spectrum with spikes at 
two fundamental frequencies plus spikes at linear combinations of these fundamental 
frequencies). At even higher Rayleigh numbers, the power spectra undergo a further 
change : the spikes broaden and their (relative) magnitude diminishes, suggesting that 
a chaotic flow regime has been reached. In any event, the spectra of the monitored 
quantities can no longer be described as a linear combination of a small number of 
discrete frequencies. Power spectra showing this trend have been depicted in figure 
3(a-f). This figure shows both time series and power spectral density functions for 
the calculated temperature at the monitor point, located in the upper part of the 
left vertical boundary layer, at ( x / H ,  y/H)=(O.W25,0.90). The Prandtl number was 
0.71 (corresponding to air) and the Rayleigh numbers are 2 x lo8 (u,b:  periodic flow 
regime), 3 x lo8 (c,d: quasi-periodic flow regime) and 7.5 x lo8 (e,f: chaotic flow 
regime). 

The two fundamental frequencies that were obtained for the different Prandtl 
numbers in the transition range could be divided into two classes: a lower one (for 
which f H / ( g f i A T H ) ' / 2  is in the range 0.050.12) and a higher one ( f H / ( g f i A T H ) 1 / 2  
in the range 0.54.7). The lower frequency was found in all monitored quantities 
whereas the higher frequency was only apparent in the downstream part of the 
vertical boundary layers. This is due to the fact that the lower frequency was below 
the Brunt-Vaisala cut-off frequency of the core region and, hence, internal gravity 
waves with this frequency could be sustained in the interior of the cavity. These 
waves are shown in figure 4, in which the temperature perturbations in the cavity are 
depicted, i.e. the time-averaged temperature at every grid point is subtracted from the 
instantaneous temperature value at a certain time-instant. The animation shows that 
the waves travel under the angle 8, given by equation (4.2), and that they travel from 
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FIGURE 3. Time series (a ,c ,e )  and corresponding power spectra ( b , d , f )  of the temperature at 
the monitor point (x/H,y/H)=(0.0025,0.90) for air in the square cavity. For the purpose of 
normalization, the power spectra have been divided by the largest value. (a,b) Ra = 2 x lo8, (c ,d)  
Ra = 3 x lo8, (e,f) Ra = 7.5 x lo8. 

the centre towards the upper right and lower left corners of the cavity. The higher 
frequency was above the cut-off frequency and, hence, no internal waves could be 
generated with this frequency, confining it to the vertical boundary layers. 

For Prandtl numbers in the range 2.5-7.0, no such conclusions about the transition 
could be drawn from the results of the calculations. Instead, there was an immediate 
bifurcation from the steady to the chaotic flow regime. This is illustrated by the 
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FIGURE 4. Internal waves in the square cavity, corresponding to fluctuations in the temperature 
for air at Ra = 2 x lo8. The dotted contour lines correspond to negative values. Contour lines 
correspond to &O.OOOS, +0.001, f0.0015 and k0.002 AT. 

results for P r  = 4 on the 160x160 grid. For Ra = 2.50 x lolo, the solution for 
large time was steady. An increase in the Rayleigh number to 2.51 x 10" causes 
the flow to become time-dependent, as can be seen in figures 5(a) and 5(b). Figure 
5(a) shows the final calculated part of the time-evolution of the temperature of the 
monitor point (x/H,y/H)=(0.004,0.90)  at Ra = 2.51 x lolo, whereas figure 5(b) shows 
the corresponding power spectrum. Clearly, the power spectrum has broadband 
characteristics and no true dominant peaks, especially when comparing it with the 
spectra obtained for air in the transitional regime (see figures 3b and 3d). Also, the 
fact that such a small increase in the Rayleigh number causes such a large difference 
in the solution for large time of the flow supports the assumption that there is an 
immediate transition from steady to chaotic without intermediate periodic and/or 
quasi-periodic flow regimes. For none of the Prandtl numbers investigated in the 
range 2.5-7.0, could a periodic or quasi-periodic flow regime be established for any 
of the calculated Rayleigh numbers. The dominant part of the power spectra was in 
all instances in the range 0.80-1.0 (in units of ( g f l A T H ) 1 / 2 / H )  and the oscillations 
were strongest in the downstream parts of the vertical boundary layers. This suggests 
that the transition for these Prandtl numbers is related to a boundary-layer-type 
instability. 
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RGURE 5. Time series and (normalized) power spectrum of the temperature oscillation at the 
monitor point (x/H,y/H)=(0.004,0.90) for P r  = 4 on the 160x160 grid at Ra = 2.51 x 10". 

Comparing the results for 0.25 < P r  < 2.0 and 2.5 < P r  < 7.0, it appears that 
the differences in the qualitative character of the transition from laminar to chaotic 
flow in the square cavity can be largely explained by a change in the nature of the 
boundary-layer instability for increasing Prandtl number. For P r  < 2, the boundary- 
layer oscillation is periodic in time, whereas for P r  2 2.5, the oscillation is chaotic 
(i.e. it has a broadband spectrum). Somewhere in the range 2 < P r  < 2.5, the 
nature of the boundary-layer instability in the square cavity must change. This can 
also explain why such a large difference occurs between the cavity and the isolated 
vertical plate configuration, at least for Prandtl numbers larger than 2. For the 
vertical plate configuration, a selective frequency amplification mechanism was found 
(Gebhart et al. 1988). For the boundary-layer instability in the square cavity, this 
selective frequency amplification mechanism becomes weaker for increasing Prandtl 
number. This process is illustrated in figure ~ ( u - c )  which shows the power spectra 
calculated from the temperature at the monitor point in the downstream part of 
the hot vertical boundary layer. Results are depicted for Prandtl numbers 0.71, 1.0 
and 2.0 respectively, for Rayleigh numbers just above the critical Rayleigh number. 
The figures show clearly that for increasing Prandtl number the range of frequencies 
amplified in the frequency band 0.5-1.0(gpA TH) '12 /H increases and that the power 
in the frequencies, corresponding to linear combinations of the two fundamental 
frequencies, increases relative to the boundary-layer frequency. For higher values 
of the Prandtl number, spectra as depicted in figure 5(b) appear and no single 
boundary-layer frequency can be found anymore. 

5.2. Low-frequency instability 
Results obtained for the low-frequency oscillation in the square cavity after the 
bifurcation have been tabulated in table 2 for three of the different Prandtl numbers 
investigated. The table shows for these Prandtl numbers the frequency f, of the 
low-frequency oscillation together with two values of the Rayleigh number, Rad and 
Rar. Here, Rad is the highest calculated value of the Rayleigh number at which 
the low-frequency oscillation was damped and Ral the lowest calculated value of 
the Rayleigh number at which the oscillation with frequency f l  was obtained in the 
solution for large time. 

As can be seen from the results in table 2, the critical Rayleigh number increases 
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FIGURE 6. Power spectra of the temperature oscillation at the monitor point ( x / H , y / H )  = 
(0.0025,0.90) for three different values of the Prandtl number: ( a )  P r  = 0.71 at Ra = 3 x lo8, 
(b) P r  = 1.0 at Ra = 5 x lo8 and (c) P r  = 2.0 at Ra = 5 x lo9. 
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RGURE 7. Frequency, f i ,  of the low-frequency oscillation as a function of Prandtl number. 

Rad R U l  
P r  fiH 

(gflATH)’12 
0.25 0.123 3.5 x 107 4.25 x 107 
0.71 0.0522 1.5 x lox 2.0 x lo8 

TABLE 2. Results for the low-frequency instability in the square cavity. 

2.0 0.0985 1.0 x 109 2.0 x 109 

from approximately 4 x lo7 for P r  = 0.25 to approximately 2 x lo9 for P r  = 2.0. The 
dimensionless frequency of the oscillation changes by a factor of approximately 2 
over the range of Prandtl number values considered here. In figure 7, the variation of 
the frequency f l  as a function of Prandtl number has been plotted for all calculated 
Prandtl number values in the range 0.25-2.0. The figure shows that there is a gradual 
decrease of the frequency as the Prandtl number is increased from 0.25 to 0.71 and 
then an even more gradual increase as the Prandtl number increases from 0.71 to 2.0. 
The fact that this change in frequency takes place gradually and is relatively small 
suggests that the instability mechanism is the same for all Prandtl numbers in the 
range 0.25-2.0. 

To investigate the origin of the oscillation in the flow for the different Prandtl 
numbers and thus to determine whether the low-frequency oscillation is, for all 
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FIGURE 8. Amplitude of the oscillation in the kinetic energy (a, c, e) and time-averaged streamlines 
( b , d , f )  in the upper half of the cavity. Contourlines for the amplitude correspond to 0.2, 0.3, 0.4, 
0.5,0.6 and 0.7 times the maximum value. The streamlines correspond to 7 equidistant values. (a, b) 
P r  = 0.25 and Ra = 4.25 x lo7, (c ,d)  P r  = 0.71 and Ra = 2 x lo8, (e,f) P r  = 2 and Ra = 2 x lo9. 

these Prandtl numbers, caused by the same instability mechanism, amplitudes of the 
oscillation in the kinetic energy, together with time-averaged streamlines are depicted 
in figure 8(a-f). The amplitudes have been defined here as the difference between 
the maximum and the minimum value of the kinetic energy. The figure shows the 
upper half (H/2 < y < H) of the square cavity for Prandtl numbers 0.25, 0.71 and 
2.0 respectively. The flow in the lower half of the cavity is symmetric with the flow in 
the upper half of the cavity. The figure demonstrates clearly the intimate connection 
between the flow divergence on the one hand, which originates from the upper left 
corner where the hot vertical boundary layer is turned horizontal by the presence of 
the adiabatic horizontal wall, and the oscillations on the other hand. 

Ivey (1984) proposed that the flow divergence was an internal hydraulic-jump 
related to the hydraulic jump as it occurs in open channel flow. This proposition 
was supported by the work of Paolucci & Chenoweth (1989) who obtained a rather 
good agreement between the critical Rayleigh number they predicted using simplified 
hydraulic jump-theory and the actual occurrence of the bifurcation in their numerical 
calculations of the flow of air (Pr = 0.71) in cavities with aspect ratios between 0.5 
and 3. However, this conjecture of an internal hydraulic jump has recently been 
questioned by Patterson & Armfield (1992) and by Ravi et al. (1994). Ravi et a1. 
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x lH 
FIGURE 9. Isotherm ( T  - Tc) / (  T h  - Tc)=0.80 for air ( P r  = 0.71) at Ra = lo8 in the upper left 

quarter of the cavity. 

(1994) performed an elaborate and detailed investigation to determine whether or not 
a hydraulic jump did occur. They found that the behaviour of the flow divergence 
with varying Rayleigh number did not correspond at all to the behaviour that might 
be expected from hydraulic-jump theory. Also, it was found that there was no 
significant loss of mechanical energy associated with the flow expansion, as there is 
for a hydraulic jump. Thus, they concluded that the divergence was not a hydraulic 
jump but that it was basically caused by a thermal mechanism. The reasoning behind 
the mechanism they propose is displayed in figure 9. It shows the time-averaged 
isotherm ( T  - T,)/( T h  - T,) = 0.80 for air at Ra = 2 x lo8 in the upper left quarter of 
the cavity. As can be seen in figure 9, the y-level of the isotherm in the core region at 
x = H / 2  is considerably below its level in the vicinity of the corner. The fact that the 
temperature of part of the fluid after turning the corner is lower than the temperature 
of the fluid in the core region at the same y-position causes the layer exiting from the 
corner to experience a (negative) buoyancy force, which forces it downward and the 
fluid layer enters the core region somewhat like an internal jet. This jet-like character 
is especially pronounced for low values of the Prandtl number (i.e. lower than 0.71, 
the value for air), since the stratification in the core region is largest for these low 
values of the Prandtl number, leading to the largest downward buoyant force. 

To study more precisely the nature of the oscillations and their relation with the 
time-averaged jet-like flow structure, vorticity perturbations in the flow have been 
visualized. These were obtained by subtracting the local time-averaged values of 
the vorticity at every grid point from the instantaneous values at 40 time instants, 
distributed uniformly over one period of the oscillation. Four of the resulting pictures 
for P r  = 0.25 at Ra = 4.25 x lo7 distributed uniformly over one period of the 
oscillation are shown in figure 10. They show the vorticity fluctuations together with 
time-averaged streamlines. The two extreme streamlines demarcate approximately the 
boundaries of the fluid layer which exits from the upper left corner of the cavity. It 
is clear from figure 10 that the vorticity fluctuations occur in localized ‘spots’ (i.e. the 
vorticity fluctuations appear concentrated in small regions). As figure 10 shows these 
spots arise in and are carried with the mean flow in this layer forming a sort of vortex 
street. This suggests that the instability is basically of the Kelvin-Helmholtz type and 
is related to the presence of points of inflexion in the mean flow velocity distribution. 
Another point to be noted from figure 10 is that the vorticity perturbations arise 
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approximately symmetrically around the centreline of the jet-like fluid layer. In 
appearance at least, this is very similar to the distribution of vorticity perturbations 
in an inviscid, parallel plane Bickley jet, as can be derived from the analytical results 
documented in Drazin & Howard (1966) and from the numerical results of Comte, 
Lesieur & Chollet (1987). 

The Bickley jet is the solution of the flow equations, obtained using the boundary- 
layer approximation, for the laminar flow issuing from a point source (Schlichting 
1968). Its longitudinal velocity, assuming parallel flow also, is given by 

where 60 is a suitably chosen transverse length scale. Stability results for the parallel 
Bickley jet show that the flow given by equation (5.1) is unstable for Reynolds 
numbers, Re = Uo60/v, larger than 4. The instability is a Kelvin-Helmholtz-type 
instability, driven by the shear stresses and related to the presence of two points of 
inflexion in the velocity distribution given in equation (5.1). These points of inflexion 
are located at 

The stability of the non-parallel Bickley jet has been studied numerically by Garg 
(1981). His results differ somewhat from the parallel flow results and suggest that the 
critical Reynolds number for the non-parallel Bickley jet is approximately 20. The 
frequencies, fao/ Uo, which will be amplified are in the range between 0.010 and 0.065. 
Apart from showing a broad range of frequencies which will be amplified, Garg’s 
results show that which frequency is amplified the most depends on the position 
inside the jet. His results suggest therefore that any frequency in this relatively broad 
range may be amplified and become dominant. 

To check the assumed analogy between the Bickley jet and the cavity flow somewhat 
further, the time-averaged velocity distribution along the line which is indicated by 
the arrows in figure 10 has been calculated. This distribution is shown in figure 11. 
From this distribution, values of VO and 60 can be estimated (by taking the maximum 
value of the velocity and by determining the distance from the point of inflexion 
to the centreline of the jet and using equation (5.2)) and the theoretical Bickley jet 
profile obtained from these estimated values, using equation (5.1), is also displayed. 
It is clear that there is, at least approximately, similarity between the two velocity 
profiles. Using these values of VO and 60,  the frequency fGo/Uo was found to be 0.04 
for P r  = 0.25 and Ra = 4.25 x 10’. This value is in the range of frequencies that 
would have been expected from the Bickley jet results. 

Typical distributions of the vorticity perturbations for P r  = 0.71 and Pr = 2.0 
have been depicted in figures 12(a) and 12(b). These figures also show vorticity 
perturbations concentrated in localized regions, roughly aligned along the mean flow 
and symmetrical around the centre of the fluid layer. This suggests that the low- 
frequency instability is, for all Prandtl numbers under consideration, caused by a 
Kelvin-Helmholtz-type shear instability. The frequencies, f&/ VO, for P r  = 0.71 and 
P r  = 2.0 in the square cavity are 0.02 and 0.06 respectively and are therefore also in 
the range that is to be expected. 

If the instability is indeed a Kelvin-Helmholtz-type instability and is furthermore 
related to the presence of inflexion points in the velocity profile, then the instability 
is basically of an inviscid type and it should therefore be expected that the instability 
disappears for small Reynolds numbers. Generally speaking (Schlichting 1968), it must 

y = kO.658560. (5.2) 
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FIGURE 10. Vorticity perturbations and time-averaged streamlines (dashed contours) in the upper 
half of the square cavity for Pr = 0.25 and Ra = 4.25 x lo7. Dotted contour lines correspond to 
negative values. Vorticity contours for kO.15, k0.25, k0.35, f0.45, f0.6 (g f lATH)1 /2 /H are shown. 
The + sign marks the position where the perturbations originate and the velocity profile in figure 
11 is taken along the line indicated by the arrows. 
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FIGURE 11. Theoretical velocity profile of the Bickley jet (dotted) and the calculated velocity profile 
in the cavity along the line indicated in figure 10. The value s = 0 corresponds to the location of 
the + sign in figure 10. 
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FIGURE 12. Vorticity perturbations and time-averaged streamlines in the upper half of the square 
cavity for P r  = 0.71 (a) and for Pr = 2.0 (6). The vorticity perturbations are for the same values 
as in figure 10. 

be expected that values of the Reynolds number of the order of 20 are necessary 
to neglect viscosity in the treatment of a stability problem. The Reynolds-number 
values based on the length scale 60 and the velocity scale Uo as determined from the 
time-averaged flow fields are tabulated in table 3. It can be seen that the Reynolds 
number of the jet-like fluid layer decreases from 99 for P r  = 0.25 to 25 for P r  = 2.0. 
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0.71 67 0.02 94 6 
2.0 25 0.06 65 35 

Bickley jet (Garg 1981) 

fSo/Uo 
0.01 - 0.065 

TABLE 3. Results for the low-frequency instability in the square cavity and for the non-parallel 
Bickley jet. The last two columns give the production of fluctuating kinetic energy by shear and 
buoyancy forces. 

Hence, for the Prandtl numbers in the range 0.25 < P r  < 2.0, the Reynolds numbers 
seem large enough for an essentially inviscid instability to occur. 

As a final check for the proposed instability mechanism, the balance of the fluc- 
tuating kinetic energy, as given by equation (2.4) has been calculated, by integrating 
all terms in group 111 over one period of the oscillation and over the entire cavity. If 
the instability is related to the presence of points of inflexion in the fluid layer, it is 
expected that the main contribution to the production of fluctuating kinetic energy is 
given by the shear stress term - u ~ u ~ d i i i / d x j .  The results for P r  = 0.25, 0.71 and 2.0 
are also given in table 3. They show that indeed in all instances the shear stresses are 
the main contributors to the production of fluctuating kinetic energy. For P r  = 0.25, 
the buoyancy even contributes negatively to the production of fluctuating kinetic 
energy. 

5.3. Boundary-layer instability 
For 0.25 < P r  < 2.0, increasing the Rayleigh number of the flow in the square cavity 
far enough leads to the occurrence of another, higher, fundamental frequency, fh, 
in the flow. The critical Rayleigh number at which this occurs will be denoted as 
Ra,,,h. The calculations prove that this second fundamental frequency is present only 
in quantities located in or near the boundary layers along the vertical walls. To show 
this, the spatial dependence of the power spectral density was calculated, i.e. the 
squared magnitude of the Fourier-component ? ( x , y , f * )  was calculated for f '  = f h .  

Here, ?(x, y ,  f') is given by 

? ( x , y , f ' )  = / T ( x ,  y ,  t)e-i(2xf")dt, (5.3) 

in which i denotes the imaginary unit. The result for air ( P r  = 0.71) at Ra = 3 x lo8 
in the square cavity is shown in figure 13. The integration in time in equation (5.3) 
has been performed over approximately 80 periods of the high-frequency oscillation 
to obtain a good accuracy for the calculated power spectrum. Figure 13 shows that 
the oscillations are especially strong in the downstream part of the vertical boundary 
layers. 

The form which this high-frequency instability takes is shown in figure 14 (again 
for P r  = 0.71 and Ra = 3 x 10'). Here, the temperature perturbations in the vertical 
boundary layer along the hot cavity wall have been visualized by subtracting the time- 
averaged temperature at every grid point from the instantaneous values at the instants 
shown (note that only 1/40th of the cavity is depicted in figure 14). Time averaging 
was performed over one period of the high-frequency oscillation. Also shown are the 
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FIGURE 13. Spatial dependence of the power spectral density (I^T(x,y,f*)12) for air ( P r  = 0.71) 
at Ra = 3 x 10'. Here, the frequency f' is taken equal to 0.6309(gBATH)1'2/H. Contour lines 
correspond to 0.1, 0.3, 0.5, 0.7 and 0.9 times the maximum value. 

zero-perturbation lines (corresponding to locations where the instantaneous values 
are equal to the time-averaged values). Figure 14 shows that the perturbations have 
the character of a travelling wave in the vertical boundary layer. 

In the past, this high-frequency instability for air has been attributed to an insta- 
bility in the vertical boundary layers and has been compared to the boundary-layer 
instability, occurring in the natural-convection boundary layer along a semi-infinite 
vertical plate in a stratified environment (Le QuCrC & Alziary de Roquefort 1985; 
Paolucci & Chenoweth 1989). Paolucci & Chenoweth (1989) obtained a reasonable 
agreement for air between the critical Rayleigh number predicted by equation (4.4), 
substituting the result of Gill & Davey (1969) for &D and their own stratification 
value S (= 1.0) calculated for the cavity, and the actual critical Rayleigh number 
observed for the high-frequency instability. When we compare our results for air in 
the square cavity we can draw the same conclusion with an estimated critical Rayleigh 
number of 1.1 x lo8 according to equation (4.4) compared to an actually observed 
critical Rayleigh number between 2.5 x lo8 and 3.0 x lo8. However, for higher values 
of the Prandtl number, large discrepancies between the two configurations occur: in 
the square cavity for P r  = 2.0 we find 4 x lo9 < Racrh < 5 x lo9. This is approximately 
two orders of magnitude larger than the critical Rayleigh number (3.63 x lo7) esti- 
mated from equation (4.4) substituting the critical Reynolds number, &D, calculated 
by Gill & Davey and the stratification value S (= 0.65) we find in our calculations for 
the square cavity. This makes the assumed analogy rather questionable. It is interest- 
ing to note that Nachtsheim (1963), who performed a linear stability analysis for the 
natural-convection boundary layer along a hot isothermal plate, placed in an isother- 
mal environment, had already noticed that the critical Rayleigh number he obtained 
for air was several orders of magnitude lower than that obtained in experiments. 

In both the studies of Nachtsheim (1963) and Gill & Davey (1969), it was found 
that these instabilities, with their low critical Rayleigh number, corresponded to 
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FIGURE 14. Temperature perturbations corresponding to the boundary-layer instability in the 
downstream part of the vertical boundary layer along the hot wall in the square cavity for air at 
Ra = 3 x lo8. Only that part of the cavity for which 0 < x / H  < 0.1 and 0.75 < y / H  < 1.0 is 
shown. The dotted contour lines correspond to negative values. Contour lines correspond to f0.016, 
$0.012 and +O.OOS AT. The dashed lines correspond to zero-perturbation contour lines. The plots 
are a quarter of the period of the boundary-layer instability apart. 

instabilities which were buoyancy-driven, i.e. the temperature fluctuations were the 
main contributors to the production of fluctuating kinetic energy. Gill & Davey (1969) 
actually calculated two types of instability for the vertical plate configuration: a low- 
wavenumber and a high-wavenumber instability. The low-wavenumber instability 
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P r  Rad 

Square cavity 

0.71 2.5 x 10' 3.0 x 10' 0.0230 
1.0 2.0 x 10' 5.0 x 10' 0.0190 
2.0 4.0 x lo9 5.0 x lo9 0.0159 

Vertical plate; shear instability 

P r  Ra, 

0.72 1.52 x 10' 0.0303 
1 .o 4.60 x 10' 0.0323 
2.0 4.51 x lo9 0.0338 

TABLE 4. Results for the boundary-layer instability. 

had the lowest critical Rayleigh number and was mainly buoyancy-driven. The high- 
wavenumber instability was mainly shear-driven. If we compare the critical Rayleigh 
numbers obtained in the square cavity with those of Gill & Davey for the shear-driven 
instability along the isolated vertical plate, a quite good agreement is obtained, as is 
evident from table 4. The critical Rayleigh numbers agree within a factor of 2 with 
each other. 

To check whether the disturbance in the cavity geometry is either buoyancy- or 
shear-driven, equation (2.4) needs to be integrated over the entire cavity and one 
period of the oscillation. However, in the square cavity, for the Prandtl numbers 
under consideration here, the high-frequency instability has a higher critical Rayleigh 
number than the low-frequency instability associated with the internal jet. Further- 
more, the low-frequency oscillations are far more energetic than the high-frequency 
oscillations so it is difficult to determine the energy contributions of shear and buoy- 
ancy for the boundary-layer instability with sufficient accuracy. For higher values 
of the aspect ratio (A > 3), the low-frequency oscillation is absent (see Le Qu6r6 
& Alziary de Roquefort 1985). Hence, energy calculations were performed for the 
cavity with aspect ratio 4 (for this aspect ratio the two vertical boundary layers are 
still well separated as is the case in the square cavity). For the cavity with aspect 
ratio 4 at Ra = 1.2 x lo8, integration of the energy equation (2.4) showed that the 
contribution of the shear terms to the production of the fluctuating kinetic energy was 
approximately 95% of the total production, which supports the previously proposed 
explanation for the observed critical Rayleigh numbers. 

The frequencies obtained are 0.0206(gbAT)2/3v-1/3 for the cavity with aspect ratio 
4 and 0.0230(g/3AT)2/3~-1/3 for the square cavity. These values differ by 50% and 
30% respectively from the value 0.0303(gflAT)2/3v-'/3 obtained by Gill & Davey 
(1969) for the boundary layer along the vertical plate. To the same extent, Paolucci & 
Chenoweth (1989) and Le QuCrS & Alziary de Roquefort (1985) obtained agreement 
between their results for the frequency of the boundary-layer instability for air in 
the cavity for different values of the aspect ratio and the results of Gill & Davey 
(1969) for the vertical plate. The difference between the two configurations as far 
as the frequencies are concerned becomes more pronounced as the Prandtl number 
increases (for P r  = 2 in the square cavity f ~ ,  = 0.0159(gbAT)2/3v-'/3 whereas for the 
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plate 0.0338(gfiAT)2/3v-’/3). In view of the results described in $5.1 regarding the 
transition to a chaotic flow, this is not very surprising. 

6. Conclusions 
The work described in this paper examined the Prandtl-number dependence of 

the laminar-turbulent transition in a natural-convection flow inside a differentially 
heated, square cavity with adiabatic horizontal walls. It was found that for Prandtl 
numbers between 0.25 and 2.0, the transition took place through intermediate periodic 
and quasi-periodic flow regimes in agreement with the proposition made by Ruelle 
& Takens (1971). However, for Prandtl numbers between 2.5 and 7.0, no such 
intermediate regimes were found. Instead, a very small increase in Rayleigh number 
resulted in the flow going from steady to chaotic (where the term chaotic denotes a 
flow regime in which power spectra have no true dominant spikes and show clear 
broadband components). This difference between the two regimes is caused by a 
difference in the nature of the instability occurring in the vertical boundary layers. 

For Prandtl numbers between 0.25 and 2.0, the instability which caused the tran- 
sition from the steady to the periodic flow regime occurred in the jet-like fluid layer 
exiting from the upper left and lower right corners of the cavity. The disturbance 
received its energy mainly from the shear stresses exerted by the mean flow. The 
visualization of the vorticity perturbations showed that they were concentrated in 
small regions and were distributed approximately symmetrically around the centre of 
the jet-like fluid layer showing a close similarity to the vorticity distribution in a plane 
Bickley jet. This suggests that the instability is, as for the Bickley jet, an inviscid 
Kelvin-Helmholtz-type instability related to the presence of points of inflexion in the 
mean velocity profile. Also, if frequencies are compared, it is found that they are in 
or very near the range of unstable frequencies found for the Bickley jet. Furthermore, 
it is found that the local Reynolds numbers for the jet-like fluid layer decrease from 
approximately 99 for P r  = 0.25 to 25 for P r  = 2.0, giving further support to the 
suggestion that this instability is a Kelvin-Helmholtz-type instability related to the 
presence of points of inflexion in the mean velocity profile. The second bifurcation 
from the periodic to the quasi-periodic flow regime originates in the boundary layers 
along the vertical cavity walls. Previous investigations performed for air (Le QuSrk 
& Alziary de Roquefort 1985; Paolucci & Chenoweth 1989) compared this instabil- 
ity with the instability occurring in the natural-convection boundary layer along an 
isolated vertical plate and obtained reasonable agreement. The present calculations 
also support this agreement for air ( P r  = 0.71) but show that there is substantial 
disagreement between the two configurations for higher Prandtl numbers. It is found 
that these discrepancies can be largely resolved if it is assumed that the instability 
in the cavity is mainly shear-driven instead of it being buoyancy-driven like the 
instability occurring in the vertical plate configuration (Gill & Davey 1969). 
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